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1. Project Synopsis 

This is the final report for the “Ohio State University CRDA, Project Number 
CRDE9501.  The objective of this research project was two-fold:  (1) develop improved 
knowledge regarding (but not limited to) Molecular Beam Epitaxy (MBE) Crystal Growth and 
Characterization for application to optoelectronic and other devices; (2) make available 
government facilities and expertise to help the OSU Research Foundation perform research and 
testing requested by industrial firms and other governmental organizations. The CRDA resulted 
in the development of spatial mode characterization techniques for semiconductor lasers.   The 
CRDA provided an avenue to supply the OSU Research Foundation with in-house developed 
ridge waveguide semiconductor lasers and in return provided verification of in-house developed 
models used to design the laser devices as well as fabrication verification. 
 
2. Introduction 

Characterization techniques to verify designed semiconductor operation needed to be 
developed to quantify the number and strength of the spatial modes.  This is important because 
lasers operating with more than one spatial mode results in increased noise in telecommunication 
systems and reduced transmission capability of the transmitter.   
 
3. Device Design, Growth, and Fabrication 

The laser structure was designed to operate with a single transverse mode as well as a 
single lateral mode.  The epitaxial layer design ensured the single transverse mode while the 
fabrication of a ridge waveguide laser structure ensured single lateral mode operation for the 
high-speed laser devices. The laser material was fabricated ridge-waveguide lasers for net modal 
gain and high-frequency analysis. 

The lasers were grown by molecular beam epitaxy on a semi-insulating, 2° off-axis (from 
the <100> to the <110> crystal plane) GaAs substrate.  The epitaxial layer structure beginning 
at the substrate consisted of a 1,000 Å Si-doped (4(1018) cm-3) GaAs buffer layer followed by a 
10,000 Å Si-doped (4(1018) cm-3) Al0.60Ga0.40As optical confinement barrier.  The active region 
consisted of 2,000 Å or 1,775 Å Al0.20Ga0.80As spacing layer (single quantum well or four 
quantum well, respectively), a 100 Å GaAs electrical confinement barrier followed by either one 
or four periods of 80 Å In0.20Ga0.80As quantum well(s) and 100 Å GaAs electrical confinement 
barrier(s), and, finally, a 2,000 Å or a 1,775 Å Al0.20Ga0.80As spacing layer.  The top cladding 
layers consisted of a 10,000 Å Be-doped (~1018 cm-3) Al0.60Ga0.40As optical confinement barrier, 
and a 500 Å heavily Be-doped (~1019 cm-3) GaAs cap layer. 

Single-mode ridge-waveguide high-speed lasers (shown in Figure 1) with 1, 2, 3, 4, and 5 
µm wide stripes were then fabricated. [1] The p-ohmic metal was evaporated and annealed. The 
40 µm wide trench was isotropically etched through the quantum well into the n-doped buffer 
layer and the n-ohmic contact metal was evaporated and annealed.  The most critical step was to 
dry etch the 5 µm wide, 10,500 Å to 12,500 Å trench about each side of the p-ohmic metal laser 
stripes.  This trench provided current confinement and optical confinement in the lateral 
direction. The structure was insulated with 2,500 Å of Si3N4, and gold plated testing pads were 
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fabricated for use with high-speed cascade probes.  The wafer was lapped to ~85 µm and metal 
was evaporated onto the backside of the wafer. The devices were diced into individual laser, 
soldered onto laser TO submounts and wire bonded. 

 
4. Spatial Mode Characterization 

The characterization of the in-house developed laser diodes are highlighted in a paper [2] 
that appears in Appendix 1.  Further information on the characterization technique can be found 
and reference [3].  Pertinent presentations [4] and [5] are also referenced 
 
5. Conclusions 

In-house developed InGaAs quantum well devices were used to perform spatial mode 
analysis.  The analysis provided excellent agreement between in-house developed models to 
design single-mode ridge waveguide structures and their actual modal operation.  This analysis 
was published in peer reviewed scientific journals and resulted in the successful defense of a 
doctoral dissertation. 
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Figure 1:  a) Schematic illustrating the layer structure and device structure for the ridge-waveguide 
laser.  b) SEM micrograph of a 5 µm laser device with the gold plated cascade probable ground-
signal-ground contact pads soldered onto a gold-plated copper submount. 
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Determining spatial modes of lasers with spatial
coherence measurements

Carolyn M. Warnky, Betty Lise Anderson, and Charles A. Klein

We explain a technique that extracts both the structure and the modal weights of spatial modes of lasers
by analyzing the spatial coherence of the beam. This is the first time, to our knowledge, that an
experimental method is being used to measure arbitrary forms of the spatial modes. We applied this
method to an edge-emitting Fabry–Perot semiconductor laser with a stripe width of 5 mm and extracted
fundamental and first-order lateral modes with relative power weights of 96.2% and 3.8%. There was
a single transverse mode. © 2000 Optical Society of America

OCIS codes: 030.1640, 030.4070, 120.3180, 140.5960.
1. Introduction

The quality of a laser beam is a topic of interest to
both designers and users of optical systems. The
designer wants to specify the optimum characteris-
tics of the laser, and the consumer needs a standard
for comparison of different lasers. In addition, a
quality factor can be useful in the manufacturing
process to determine the acceptance criteria.

Different aspects of the beam quality may have
higher priority in various optical systems. There-
fore it is difficult to define a quality factor by a single
number. Some of the methods to measure beam
quality are the M2 second-moment method, knife-
edge scanning, slit scanning, and energy measure-
ment in a variable aperture.1

An alternative way to specify the quality of a laser
beam is to define the form of the spatial modes and
the distribution of power over the modes. This in-
formation can be of value to the designer in examin-
ing variations in the refractive-index profile, gain
distribution, or structure of the laser. Similarly,
specifying the modes and weights defines a standard
of comparison of beam characteristics for the user.

A common standard for an ideal laser is one with a
single Gaussian spatial mode. However, a laser

The authors are with the Department of Electrical Engineering,
The Ohio State University, 205 Dreese Laboratory, 2015 Neil Av-
enue, Columbus, Ohio 43210. The e-mail address for B. L. Ander-
son is anderson@ee.eng.ohio-state.edu.

Received 24 February 2000; revised manuscript received 8 Au-
gust 2000.

0003-6935y00y336109-09$15.00y0
© 2000 Optical Society of America
2

beam could appear to be Gaussian and still be mul-
timode. It is also possible for a laser to be single
mode and not be Gaussian. For example, thin-
junction semiconductor lasers have an approximately
Lorentzian-shaped spatial mode in the plane perpen-
dicular to the junction that may be truncated by pack-
aging because of the large divergence.2–4 Even
parallel to the junction plane there may be asymme-
tries in fabrication and gain guiding that would cause
the fundamental mode to differ from the Gaussian
model.

Multimode lasers can be characterized by a basis
set of spatial modes and the weights of each mode.
Other techniques of determining modal weights rely
on assumed expressions for the spatial modes, usu-
ally Hermite–Gaussian modes for rectangular sym-
metry lasers. Although Hermite–Gaussian modes
have the advantage of mathematical tractability,
they may not adequately represent the physical char-
acteristics of the laser. If the Hermite–Gaussian
model is physically inconsistent with the laser, erro-
neous results will be found for the number of modes
and their weights.

The technique outlined in this paper shows how it
is possible to find the weights and forms of the spatial
modes without any a priori assumptions of the shape
of the modes. The spatial modes found in this ex-
perimental method may show greater insight into the
physical characteristics of the laser. This insight is
especially useful in laser analysis and design.

Various methods have been proposed for determin-
ing the weights of a laser’s spatial modes including
curve fitting,5 matrix inversion,6,7 M2 analysis,8 fre-
quency mixing,9 and coherence measurements.10–12

All these methods assumed the Hermite–Gaussian
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6109
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form of the spatial modes. In addition, the first
three methods, which use intensity measurements in
a plane, require some additional information to
uniquely reconstruct the weights,13 such as intensity
in an additional plane5 or parameters, particularly
the spot size, taken from knowledge of the laser
cavity.6–8 The frequency mixing method is not suit-
able for measuring quantitative mode weights but
has been used for real-time adjustments to reduce
modes in a slow-flow CO2 laser.

We propose a technique for taking spatial coher-
ence measurements in an arbitrary axial plane of the
laser beam. These measurements comprise a mu-
tual intensity matrix that, when decomposed with
our algorithm into eigenvectors and eigenvalues,
leads to the spatial modes and mode weights. This
technique is particularly suited to semiconductor la-
sers or other lasers that have a few low-order modes
that would be difficult to distinguish by intensity
measurements. For example, Fig. 1 demonstrates
how a Gaussian beam, shown by a solid curve, is
similar to a beam, represented by a dashed curve,
with 95% of the total power in the Gaussian mode and
5% in the first-order Hermite–Gaussian mode.

This paper has a total of seven sections. In Sec-
tion 2 we present the theoretical background of the
spatial coherence of modes. In Section 3 we explain
the experimental setup that we used to extract infor-
mation about spatial modes and modal weights from
an arbitrary laser beam. In Section 4 we summarize
the numerical analysis used to process the experi-
mental data. Experimental results are given in Sec-
tion 5. In Section 6 we look at the robustness of our
method by performing computer simulations with
noisy data. A short summary concludes the paper.

2. Theory

In this section we define the terms necessary to ex-
plain our experimental technique. We discuss spa-

Fig. 1. Intensity profiles of a Gaussian beam ~solid curve! and a
beam with 95% power in the fundamental mode and 5% in the
first-order Hermite–Gaussian mode ~dashed curve!.
110 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
tial modes and spatial coherence and how the two are
related.

A laser cavity can have multiple longitudinal
modes and multiple spatial modes, depending on the
geometry of the cavity. In this paper we are con-
cerned with the spatial modes, sometimes called
transverse modes to distinguish them from the lon-
gitudinal modes. Multiple spatial modes increase
the overall spectral linewidth of the laser, and the
higher-order spatial modes also increase the spatial
width of the beam.

The spatial modes define a basis set for the spatial
variation of the optical field of the laser beam. Us-
ing z as the distance along the optical axis, we define
the x and y axes suitable to the cavity geometry. If
he spatial modes are separable, the wave function
an be written as

cmn~x, y, z! 5 fm~x, z!fn~y, z!exp@ jamn~x, y, z!#, (1)

where m is the mode index in the x direction, n is the
mode index in the y direction, fm~x, z! and fn~y, z!
are the amplitude functions of the spatial modes, and
amn is a phase term. Amplitude functions need not
be analytically known for a physical laser.

In the general case, if the spatial modes, fm~x, z!,
and fn~y, z! are known in any arbitrary plane, then
standard diffraction theory can be used to transform
the modes to the form at the exit face of the laser. In
the specific case of Hermite–Gaussian modes, the
modes are shape invariant during propagation so the
same form is found at any point along the z axis. In
contrast, the shape of the transverse mode of a thin-
junction semiconductor laser is propagation depen-
dent. This mode, perpendicular to the junction, can
be modeled as E0 exp~2puxu! at the exit face but the
far-field distribution is Lorentzian,2 which is the Fou-
rier transform of the exit face mode.

Laser cavities with rectangular geometries are
usually described by separable Hermite–Gaussian
spatial modes based on the work by Fox and Li.14

This model is often useful because the modes are
shape invariant and can be defined functionally. In
addition, any arbitrary distribution can be expanded
in terms of these modes. They can sometimes de-
scribe the physical characteristics of the laser well,
especially when the laser is symmetric, has low dif-
fraction losses from finite-aperture mirrors, and the
dimensions of the resonator are large compared to the
wavelength.15

Conversely, certain types of lasers have spatial
modes that are not Hermite–Gaussian. These in-
clude lasers that are asymmetric either in structure
or gain and lasers with small cavity dimensions.

Optical coherence, measured by the mutual coher-
ence function, is both spatial and temporal. The
mutual coherence function G is defined as the cross
correlation between the optical fields at two points,
P1 and P2, with a time difference of t and is given as16

G12~t! 5 ^E~P1, t 1 t!E*~P2, t!&, (2)
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where the angle brackets refer to time averaging and
the asterisk refers to complex conjugation. We as-
sume cross-spectral purity which allows the mutual
coherence function to be factored into spatial and
temporal functions.17 The time dependence of the
mutual coherence function is sinusoidal with the fre-
quency of the light and also has a slowly varying
dependence on the time difference t between the two
sample points. If the beam is narrow band, as is the
case for lasers, and t is much less than the coherence
time, the beam is temporally coherent and the sinu-
soidal variation is the only time dependence mea-
sured. Light that satisfies these conditions is called
quasi-monochromatic17 and is assumed throughout
this paper. Under quasi-monochromatic conditions
the mutual coherence function simplifies to17

G12~t! > J12 exp~2j2pn0t!, (3)

where J12 5 G12~0! is the mutual intensity and n0 is
the center frequency of the light. The subscripts for
J or G do not refer to the mode number but to the two
points P1 and P2. The mutual intensity is possibly
complex because of phase differences between P1 and
P2 and can be thought of as a phasor amplitude of a
patial sinusoidal fringe.17

The spatial coherence of a laser beam is deter-
mined by the composition of the spatial modes. The
modes are mutually uncorrelated, and each mode is
completely spatially coherent at the laser mirror sur-
face if there are no frequency degeneracies.18 ~Fre-
quency degeneracies can arise when different
combinations of m and n give a constant m 1 n. For
thin-junction semiconductor lasers this is not a factor
because m is constrained to be 0.!

Because the basis set of modes is complete and
orthogonal, the mutual intensity in one dimension
can be written as19

J12 5 (
m

lmcm*~x1!cm~x2!, (4)

where lm is the power weight of the mth mode and cm
is the wave function of the mth mode. Wolf origi-
nally developed this idea in the frequency domain,19

but under the quasi-monochromatic conditions the
functions in the frequency domain are approximately
delta functions and are therefore constant in the time
domain.

Mutual intensity can be separated into a phase
term, exp~ jb12!, multiplied by a real term J12

r or

J12 5 J12
r exp~ jb12!. (5)

he real part of Eq. ~4! is

J12
r 5 (

m
lmfm~x1!fm~x2!, (6)

where the f’s refer to the amplitude functions of Eq.
~1!. Using the homogeneous Fredholm integral
2

equation, we obtain the weights of the modes, lm,
from

*
2`

`

J12
rfm~x2!dx 5 lmfm~x1! (7)

if the forms of the modes are known. This is the
underlying principle that the other spatial coherence
methods use for finding modal weights.

For our method we work directly with Eq. ~6! to find
not only the eigenvalues, or modal weights, but also
the eigenvectors, which are the mode shapes. We
explain our experimental procedure for measuring
J12

r in Section 3.

3. Experimental Setup

To acquire data for spatial coherence, some type of
optical interference is necessary. This can be imple-
mented in a variety of ways including two pinholes,11

a reverse phase-front interferometer,10 a lateral
shear interferometer,20 or a twin-fiber interferome-
ter.12 The reverse phase-front interferometer is
only capable of interfering a point x with its mirror
image 2x so is not general enough for our purposes.
Use of two pinholes introduces significant diffraction
losses, and the setup is not as flexible as the twin-
fiber interferometer.

The trade-offs between the lateral shear inter-
ferometer and the twin-fiber interferometer are
speed of data acquisition versus resolution, data
range, and fewer surfaces. The shearing inter-
ferometer is inherently faster because split portions
of the beam interfere together and are recorded in
parallel by a CCD camera. In contrast the twin-
fiber interferometer steps through many locations in
the beam with the two arms of a fiber coupler sam-
pling the beam. Because of the slow speed of the
interface with the optical powermeter, our current
setup requires 2–4 h to acquire data using the twin-
fiber interferometer. This could be improved by 2
orders of magnitude if a high-speed optical powerme-
ter were used. However, even a slow powermeter
has resolution and range advantages over most cam-
eras, especially 8-bit cameras. This advantage is
important to distinguish low-amplitude modes from
noise. In addition, the lateral shear interferometer
has surfaces from beam splitters and neutral-density
filters that can introduce unwanted interference ef-
fects. For the experimental setup described in this
section we used the twin-fiber interferometer.

The twin-fiber interferometer is shown in simpli-
fied form in Fig. 2. The figure is drawn in the x–z
plane but we could equivalently picture it in the y–z
plane by replacing x with y. The interferometer in-
cludes a single-mode fiber coupler, indicated by a
thick line, with the two input arms sampling the
beam on the left and one output arm emitting onto a
detector, shown at the top of the figure. The input
arms must be cleaved to the same length to maintain
temporal coherence. To improve the visibility of the
interference, a polarization controller, labeled PC in
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6111
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the figure, is used to match the polarization states of
the two arms. One fiber arm is wrapped around a
piezoelectric stretcher, labeled PZS in the figure, to
vary the phase difference between the two arms. Al-
ternatively, one fiber could be translated in z, varying
the phase between points x1 and x2.

In our experimental setup, the input arms of the
twin-fiber interferometer are on computer-controlled
x–y–z stages, and the detected output is recorded by
a computer. The bare fibers of the input arms are
attached to grooved plates that can be mounted so
that the plates lie either in the x–z or the y–z plane.
The mounting of the fibers is shown in Fig. 3.

To measure the mutual intensity across the full
diameter of the beam we take measurements with x1
and x2 at all possible combinations in the beam.
This is shown graphically for one row in Fig. 4. For
one row one fiber is fixed at a point x1 in the beam,
and the other fiber is then stepped through the pos-
sible range of positions for x2. To take measure-
ments for another row, the first fiber is moved to a
different x1, and the second fiber steps through the

ew range of x2. These measurements result in a
atrix of data with the steps of x1 indicating rows

and the steps of x2 indicating columns. As the posi-
tion of x1 increases, the row index increases; and as

Fig. 2. Twin-fiber interferometer sampling a beam on the left,
with the detector at the top right. A polarization controller ~PC!
is on one arm of the interferometer and a piezoelectric stretcher
~PZS! is on the other arm.

Fig. 3. Input ends of the fibers are attached to metal plates that
are mounted on computer-controlled x–y–z translation stages.
112 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
the position of x2 increases, the column index in-
creases. Because of the physical limitations in the
positioning of the fibers, x2 . x1 1 d, where d is the
diameter of the fiber.

The sampled fields are added by the coupler, and
the total sum is squared by the detector. To produce
interference fringes, we introduce a time difference t
either by stretching one of the fibers with a piezoelec-
tric stretcher or by translating one fiber perpendicu-
lar to the wave front. Mathematically the detector
intensity is described by

ID 5 ^@K1 E~x1, t 1 t! 1 K2 E~x2, t!#

3 @K1 E~x1, t 1 t! 1 K2 E~x2, t!#*&, (8)

where ID is the detector intensity, the K terms quan-
tify the loss of each fiber arm, and E refers to the field
sampled at the two points x1 and x2. This simplifies
to

ID 5 I1 1 I2 1 2uK1uuK2uuJ12
rucos~2pn0t 2 g12!, (9)

where g12 includes the effects of b12 from Eq. ~5!, any
hase difference introduced by K1 and K2, and 0 or p
epending on the sign of J12

r. Also, I1 refers to the
intensity at point x1 measured at the detector without
interference from any field at x2. Similarly, I2 is the
intensity at point x2.

The amplitude of the mutual intensity is propor-
tional to the peak-to-peak value of the detected in-
tensity. This can be written as

uJ12
ru 5 ~Imax 2 Imin!y4uK1uuK2u, (10)

where Imax is the detected intensity when the cosine
term is 1 and Imin is the intensity when the term is
21. The value of the constant 4uK1uuK2u is not im-
portant because it cancels out when relative weights
are determined. The phase term g12 is important
only if there are jumps of p rad as x1 and x2 vary.
These jumps point to a sign change of J12

r and can be
inferred from the shape of the mutual intensity.

4. Numerical Analysis

The next step after we measure the mutual intensity
is to decompose the data to determine the spatial

Fig. 4. For each row of data in the correlation matrix, one input
is kept at a constant x1, and the other input steps through the
range of positions for x2.
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modes and modal weights. We recognize in Eq. ~6!
that the mutual intensity is the sum of the outer
products of the modes, or a q 3 q correlation matrix,

R 5 FLFT, (11)

here the T refers to the transpose, q is the number
f data points for x1 in a complete matrix, and bold-

face signifies a matrix. The matrix R is necessarily
eal and symmetric with eigenvectors F, the spatial
odes, and eigenvalues, which are the diagonal val-

es of L, that are the modal power weights.
We record mutual intensity data in the correlation
atrix by varying the two sample points over one

imension x of the beam. This one-dimensional im-
lementation is valid if the modes are separable.
Thin-junction semiconductor lasers have separable
patial modes when measured along the x or y axes.4!

A row refers to a constant x1, and a column refers to
a constant x2. With a complete, noise-free matrix
the eigenvectors and eigenvalues can be found
through standard eigenvector or singular value de-
composition ~SVD! routines. With enough data the
form and weights of the modes can be found without
any assumptions about the modes.

There are two experimental issues that make it
more difficult to find the actual modes and weights:
noise and insufficient data. Under the category of
noise there are laser output fluctuations, detector
noise, background light variations, and position er-
rors in the fiber translations. Noise may produce
false higher-order modes or may distort the shape of
low-order modes, or both. Insufficient data can oc-
cur if the number of modes exceeds the rank of the
matrix or can be due to experimental limitations,
such as in the twin-fiber interferometer. Because
the fibers cannot physically be superimposed or pass
through each other, the data points are in the upper
triangle of the correlation matrix. Thus the diago-
nal and one or more superdiagonals are missing, par-
ticularly if the diameter of the fiber is larger than the
step size between data points. The symmetry of the
matrix is used to fill in the lower triangle of the
matrix but the diagonals are unknown. We can cir-
cumvent this experimental issue by displacing the
fibers in the y axis if the modes are separable. How-
ever, there will be a reduction in the overall mutual
intensity amplitude, and the intensity levels may be
too low. With enough redundancy in the data, how-
ever, the modes can be recovered even without these
diagonal elements.

Our method to recover the modes is known as vec-
tor Newton’s method in numerical analysis or Jaco-
bian control in the field of robotic control.21 It is an
iterative algorithm that starts with an initial guess
for the modes and weights and then updates these to
fit two independent conditions: namely, orthogonal-
ity of modes and a least-squares fit to the measured
data. Typically we choose to find a specific small
number of modes before running the algorithm.
Later we rerun the algorithm for progressively larger
number of modes until additional modes are clearly
2

noise. The initial guess for the modes is the column
eigenvectors found from a SVD of the incomplete ma-
trix, with 0 in the missing diagonal elements. This
initialization assures that the results are not biased
by any assumptions about the modes.

The Jacobian algorithm develops from Taylor-
series approximations. A first-order Taylor-series
approximation of a vector function f with a vector
argument v that changes by Dv is f~v 1 Dv! 5 f~v! 1
JDv, where J is the Jacobian matrix whose elements
are defined by J~i, j! 5 ]fiy]vj. Now suppose we
want to find a particular Dv that causes a new de-
sired value of f~v 1 Dv!. The change is found when

e solve

JDv 5 r 5 f~v 1 Dv! 2 f~v!, (12)

here the difference between the desired and current
alues of f is called the residual vector r. Because
he Jacobian matrix is not generally square, we must
se the pseudoinverse J1 to solve for Dv. The re-
ulting solution is

Dv 5 J1r 1 ~I 2 J1J!z, (13)

where I is the identity matrix and z is an arbitrary
vector in Dv space. The second term represents ho-
mogeneous solutions to Eq. ~12! when it is underde-
termined.

To find the set of modes, there are two sets of
conditions and therefore two Jacobian matrices and
two residual vectors. Our unknowns, the modes and
weights, can be represented as the single vector v.
To do this, we first define the weighted spatial modes
vk, where k 5 1, 2 . . . n, to be the same as the eig-
envectors of Eq. ~11! multiplied by the square root of
the appropriate eigenvalues. We then form a single
vector v of length nq by concatenating the weighted
spatial modes. To represent the two conditions we
define Jm as the data-matching Jacobian matrix and
Jo as the orthogonality condition Jacobian matrix.
The corresponding residuals are rm and ro.

The calculated modes must be orthogonal and have
a least-squares fit to the measured data. These re-
quirements dictate that we treat the orthogonality
condition as the primary criterion and the data
matching as secondary. Applying the orthogonality
condition in Eq. ~13!, we obtain Dv 5 Jo

1ro 1 ~I 2

o
1Jo!z. Next Dv is substituted into the Jacobian

quation for data matching, and we solve for a z
hich finds a least-squares fit to the data while pre-

erving the orthogonality of the modes. When we
ubstitute this z into Eq. ~13! and follow the simpli-
ying procedure of Ref. 21, the result is

Dv 5 Jo
1ro 1 @Jm~I 2 Jo

1Jo!#
1~rm 2 JmJo

1ro!. (14)

The initial guess for v results from the SVD of the
measured matrix with 0 for the missing diagonal el-
ements. After computing Eq. ~14!, we update v by
adding Dv. This process is repeated until the size of
Dv or the residual errors are less than a defined
criterion.

To see how we calculate the orthogonality Jacobian
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6113
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matrix, first note that orthogonality requires that the
inner product of two different spatial modes be 0.
Mathematically, this is expressed as vk

Tv1 5 0 for
k Þ l, where k, l 5 1, 2 . . . n and n is the number of

odes. Because the order of k and l does not matter,
here are n~n 2 1!y2 unique combinations. The size

of Jo is therefore n~n 2 1!y2 by nq and ro is a column
ector of length n~n 2 1!y2. We desire that each

unique combination be 0, therefore the elements of
the residual vector are the negatives of the current
products.

For a concrete example, consider a problem in
which we are looking for three modes. The updated
modes, v1 1 Dv1 and v2 1 Dv2, must be orthogonal.
Therefore their inner product is 0, or

0 5 ~v1 1 Dv1!
T~v2 1 Dv2!

5 v1
Tv2 1 Dv1

Tv2 1 v1
TDv2 1 Dv1

TDv2. (15)

The first term is considered a known residual error,
and the last term is dropped in a first-order expan-
sion. The residual vector in the next iteration will
include the effects of our using only a first-order ap-
proximation in the current iteration; as the system
converges, all errors go to 0. Likewise, we can ex-
pand the orthogonality conditions for the other mode
combinations: modes v1 and v3 and modes v2 and
v3. Combining these expressions in matrix form, we
generate the orthogonality Jacobian and residual
vector:

JoDv 5 Fv2
T v1

T 0
v3

T 0 v1
T

0 v3
T v2

TGFDv1

Dv2

Dv3

G 5 F2v1
Tv2

2v1
Tv3

2v2
Tv3

G 5 ro. (16)

The Jacobian system for data matching can be gen-
rated in a similar way. We want the elements of
he calculated q 3 q matrix R of Eq. ~11! to be as close

as possible to the measured data elements of matrix
D. If 1 1 2p diagonals are missing from D, then it
can be shown that there are exactly @~q 2 p!2 2 ~q 2
p!#y2 unique measured elements. The factor of 2
comes from the symmetry of the matrix. Suppose
D~i, j! is one of the measured elements of D. The
corresponding i, j element of R can be expressed as

R~i, j! 5 (
k51

n

vk~i!vk~ j!. (17)

Performing a first-order expansion of Eq. ~17!, as in
Eq. ~15!, we determine the following pattern for gen-
erating Jm. Start Jm as a zero valued @~q 2 p!2 2
~q 2 p!#y2 by an nq matrix. Then we obtain the
rows, indexed by h, by stepping through the combi-
nations of i 5 1 . . . q 2 ~p 1 1! and j 5 i 1 ~p 1
1! . . . q and defining, for k 5 1 . . . n,

Jm@h, ~k 2 1!q 1 i# 5 vk~ j!,

Jm@h, ~k 2 1!q 1 j# 5 vk~i!. (18)

The elements of the residual vector rm~h! are then
D~i, j! 2 R~i, j!, where h determines the choice of i and
j.
114 APPLIED OPTICS y Vol. 39, No. 33 y 20 November 2000
5. Experimental Results

To test our spatial mode extraction method we per-
formed some experiments on an infrared, ridge-
waveguide, multiple-quantum-well laser with a
stripe width of 5 mm. The laser was fabricated of
GaAs and AlGaAs, had a Fabry–Perot cavity, and
was edge emitting. In the lateral direction, in the
plane of the junction, one approximately Gaussian-
shaped mode was expected with possible higher-
order modes. In the transverse direction,
perpendicular to the junction, only one mode was
expected with a probable Lorentzian shape. Mutual
intensity measurements were made separately in the
lateral and transverse directions.

We found a single spatial mode in the transverse
direction. This mode, shown in Fig. ~5!, is a good
example of when one retrieves physical modes rather
than predetermined analytical modes, e.g., Lorent-
zian. The transverse mode has some sidelobes, sim-
ilar to a sinc function, that were the diffraction effects
of the beam being truncated by the collimating lens.
It was still fully spatially coherent because spatial
coherence propagates through an optical system just
as beams do. If Lorentzian or Hermite–Gaussian
modes had been assumed, the sidelobes in the inten-
sity profile would erroneously indicate multiple
higher-order modes.

In the lateral direction, the data were also analyzed
with the Jacobian algorithm. We extracted two
modes that are plotted with 1’s in Fig. 6. As a com-
parison, Hermite–Gaussian modes with the same rel-
ative powers are plotted with dashed curves. The
relative field weights of the experimental modes are
83.4% and 16.6%, making the power weights 96.2%
and 3.8%.

We analyzed the same data again requesting three
modes. The strongest mode was virtually identical
for either case, whether we specified two or three
modes in the algorithm. The next smaller mode in
weight had similar shapes for both cases and the
same norms. In the presence of noise, our algorithm

Fig. 5. Single transverse spatial mode extracted by the Jacobian
method from measured data.
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forces some of the noise energy into higher-order
modes if too many modes are requested. When we
requested three modes from the experimental data, it
resulted in a third mode with high spatial frequency
variations, which is typical of noise. From the fact
that the two strongest modes were consistent and
from the spurious nature of the third mode, we con-
cluded that only the two stronger modes were genu-
ine physical modes.

An important point must be emphasized for the
results shown in Fig. 6. The algorithm used no as-
sumptions about the shape of the modes because the
initial guess in the algorithm came from a SVD of the
incomplete correlation matrix. The fact that the two
modes are similar to Hermite–Gaussian modes re-
flects the geometry of the Fabry–Perot cavity and not
any presuppositions of the mode shapes.

There are some differences between the physical
modes shown in Fig. 6 and similar Hermite–
Gaussian modes. The asymmetry in the shape of
the stronger mode was probably caused by asymme-
try in the laser itself. Some of the variation in the
weaker mode near the peaks may be due to noise.
As we discuss in Section 6, noise effects on the fun-
damental mode are confined mainly to the center of
the beam. The weaker mode is more affected by the
noise.

6. Noise Simulations

As a check on the validity of the mode extraction
algorithm in the presence of noise, we performed a
number of computer simulations. We generated
one-dimensional spatial modes as an example of an
almost single-mode Gaussian beam. We used two
Hermite–Gaussian modes with relative power
weights of 95% in the fundamental mode and 5% in
the first-order mode. These weights correspond to
81.3% and 18.7% in terms of the electric field. The
modes were normalized so the total energy was 1.

Fig. 6. Lateral spatial modes extracted by the Jacobian method
from measured data indicated by 1’s. Exact Hermite–Gaussian
modes are shown for comparison with a dashed curve. The actual
physical modes resemble, but are not exactly, Hermite–Gaussian.
2

The spatial width was 4w0, where 2w0 is the diame-
ter of the fundamental mode 1ye field spot size. The
width was normalized to w0 5 1, and the range of
positions was 22 # x # 2.

From the simulated modes we generated a 29 3 29
orrelation matrix, the size corresponding to the data
atrix used in experimental measurements. The
oise-free correlation matrix was made up of the sum
f the outer products of the exact weighted modes.
e calculated the matrices of maximum and mini-
um intensities at each point, Imax and Imin, using

Eq. ~9!, with K1 5 K2 5 1.
The number of missing diagonals was varied to see

how well the modes could be retrieved as the avail-
able data points were reduced. For an error-free
correlation matrix, five superdiagonals, or a total of
11 diagonals out of 57, could be missing, and the two
remaining modes were still extracted with virtually
no error. Even when three or four modes were re-
quested, two modes were found with the correct
weights and the extra modes converged to 0. For the
simulated noise tests that follow, the number of miss-
ing superdiagonals was kept at two, for a total of five
missing diagonals.

To simulate noise, we modeled two different types
of noise. The first is background noise, with a con-
stant variance over the whole beam, and the second is
intensity-dependent noise, proportional to the de-
tected intensity at each point. The noisy correlation
matrix was then ~Ĩmax 2 Ĩmin!y4, where the tilde sig-
nifies that noise has been added.

To model the background noise we generated a
matrix of noise with a uniform distribution from 20.5
to 0.5 and then multiplied it by a percentage of the
peak of the Imax matrix. Different realizations of
this noise were added to Imax and Imin. We used
three levels of background noise: 0, 60.5%, and
61%.

The intensity-dependent noise was generated for
the maximum and minimum intensities at each data
point. Random noise matrices, uniformly distrib-
uted over 20.5 to 0.5, were multiplied element by
element by a percentage of Imax or Imin. The result-
ing noise was added to Imax or Imin, as appropriate.

e used 21 levels of intensity-dependent noise: 0,
0.5%, 61%, 61.5%, . . . 610%.
The results for the relative weight of the first-order

mode are summarized in Table 1. The rows repre-
sent the varying amounts of intensity-dependent
noise, as listed in the leftmost column. The second,
third, and fourth columns show the relative weight
for background noise of 0%, 60.5%, and 61%. The
relative weight should be 0.05, because 5% of the
power is in the first-order mode, but the effect of noise
is shown by increased power being attributed to the
weaker mode. The values listed are the average for
the 50 different noise simulations for each combina-
tion.

The extracted modes for six of the 63 combinations
of noise from Table 1 are illustrated in Fig. 7. The
horizontal axes represent the position in the beam,
normalized to spot size. The vertical axes show elec-
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6115
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Table 1. Relative Weight of the First-Order Mode as

6

tric field amplitude, normalized so that the total en-
ergy in the noise-free beam is 1. The subplots each
represent a different set of conditions. Each subplot
superimposes the results from 50 different noise re-
alizations of the same conditions. A comparison of
the first column of subplots with the second column
shows an increase in background noise. The rows of
subplots have increasing intensity-dependent noise
as can be seen from top to bottom. In the first row of
plots there is no intensity-dependent noise, and the
background noise is 60.5% in Fig. 7~a! and 61% in

ig. 7~b!. The second row has 62.5% intensity-
dependent noise with no background noise in Fig. 7~c!

Intensity-Dependent Noise and Background Noise are Varieda

Intensity
Dependent ~%!

Background
0%

Background
60.5%

Background
61%

0 0.0500 0.0502 0.0507
60.5 0.0500 0.0501 0.0508
61.0 0.0501 0.0503 0.0509
61.5 0.0500 0.0502 0.0508
62.0 0.0503 0.0505 0.0508
62.5 0.0502 0.0504 0.0510
63.0 0.0504 0.0509 0.0506
63.5 0.0505 0.0507 0.0517
64.0 0.0512 0.0511 0.0518
64.5 0.0514 0.0508 0.0515
65.0 0.0517 0.0513 0.0517
65.5 0.0518 0.0517 0.0520
66.0 0.0524 0.0512 0.0521
66.5 0.0513 0.0530 0.0532
67.0 0.0531 0.0526 0.0521
67.5 0.0520 0.0539 0.0539
68.0 0.0537 0.0545 0.0534
68.5 0.0535 0.0532 0.0556
69.0 0.0555 0.0547 0.0566
69.5 0.0545 0.0551 0.0567

610.0 0.0552 0.0560 0.0562
a
The correct relative weight is 0.05.

Fig. 7. Noise simulations with 50 realizations superimposed.
Background noise is 0% in ~c! and ~e!, 60.5% in ~a!, and 61% in ~b!,
~d!, and ~f !. Intensity-dependent noise is 0% in ~a! and ~b!, 62.5%
in ~c! and ~d!, and 65% in ~e! and ~f !.
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and 61% background noise in Fig. 7~d!. In the third
ow, the intensity-dependent noise is increased to
5%, with no background noise in Fig. 7~e! and 61%

background noise in Fig. 7~f !.
We can see in Fig. 7 that the error in the shape of

the extracted modes is most sensitive to background
noise. This is reasonable because the areas of low
intensity in the beam will have a low signal-to-noise
ratio, as opposed to the intensity-dependent noise
where the signal-to-noise ratio stays constant. Ob-
viously, an increase in intensity-dependent noise also
increases the error in the mode forms, but not as
significantly. Note also that for all cases the weaker
mode is more corrupted by noise than the fundamen-
tal mode.

The mode weights were found within less than a
percentage point for the worst case shown in Fig. 7.
The relative power weight of the first-order mode in
Fig. 7~f ! is within the range 0.049–0.055, where 0.05
s the noise-free weight. ~On this scale, the weight of
he fundamental mode is 1 minus the weight of the
rst-order mode.! For all the possible noise levels
ested, even with 610%, the relative weight of the
eaker mode stayed within the range of 0.048–
.065. The weight of the weaker mode tended to
ncrease as the noise levels increased because most of
he noise power was included in the extraction of the
eaker mode.
In the experimental results in Section 5, the overall

oise was less than 65%. Background noise was
less than 60.1%. Short-term intensity-dependent
fluctuations during 5–10 min were not more than
63% at any point in the beam. Taking into account
laser power drift and possible positional errors, the
noise was still less than 65%. This most closely
corresponds to the case of Fig. 7~e!. Comparing Fig.
6 with Fig. 7~e! we can see that the irregularities in
the weak mode are not surprising for the amount of
noise. Any variation in the fundamental mode, how-
ever, would basically be confined to the center of the
beam. This suggests that the asymmetry observed
in the strong mode of Fig. 6 is physical.

7. Summary

We have demonstrated the ability of determining the
weights and arbitrary structure of spatial modes in a
few-mode laser. No prior knowledge of the laser
beam, such as spot size, is necessary. The 5-mm-

ide stripe, ridge-waveguide laser that we tested had
wo modes, with 96.2% of the power in the fundamen-
al mode and 3.8% in a first-order mode. Using ex-
ct modes of 95% and 5%, our computer simulations
how that this method is robust and extracts the
orrect modes with weights within one half of a per-
entage point for a background noise level of 60% of
aximum intensity and an intensity-dependent
oise level of 65%. The experimental measure-
ents were made under similar noise conditions.

We thank Wright-Patterson Air Force Base which
rovided the laser tested under a Cooperative Re-
earch and Development Agreement.
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9. A. Liesenhoff and F. Rühl, “An interferometric method of
laser beam analysis,” Rev. Sci. Instrum. 38, 4059–4065
~1995!.

10. P. Spano, “Connection between spatial coherence and modal
2

Commun. 33, 265–270 ~1980!.
11. E. Tervonen, J. Turunen, and A. T. Friberg, “Transverse laser-

mode structure determination from spatial coherence mea-
surements: experimental results,” Appl. Phys. B 49, 409–
414 ~1989!.

12. L. J. Pelz and B. L. Anderson, “Practical use of the spatial
coherence function for determining laser transverse mode
structure,” Opt. Eng. 34, 3323–3328 ~1995!.

13. F. Gori, M. Santarsiero, and G. Guattari, “Coherence and the
spatial distribution of intensity,” J. Opt. Soc. Am. A 10, 673–
678 ~1993!.

14. A. G. Fox and T. Li, “Resonant modes in a maser interferom-
eter,” Bell Syst. Tech. J. 40, 453–488 ~1961!.

15. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc.
IEEE 54, 1312–1329 ~1966!.

16. M. Born and E. Wolf, Principles of Optics ~Pergamon, Oxford,
UK, 1980!.

17. J. W. Goodman, Statistical Optics ~Wiley, New York, 1985!.
18. E. Wolf and G. S. Agarwal, “Coherence theory of laser resona-

tor modes,” J. Opt. Soc. Am. A 1, 541–546 ~1984!.
19. E. Wolf, “New theory of partial coherence in the space-

frequency domain. Part I: Spectra and cross spectra of
steady-state sources,” J. Opt. Soc. Am. 72, 343–351 ~1982!.

20. C. Iaconis and I. A. Walmsley, “Direct measurement of the
two-point field correlation function,” Opt. Lett. 21, 1783–1785
~1996!.

21. A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for
kinematically redundant manipulators in dynamically varying
environments,” Int. J. Robotics Res. 4, 109–117 ~1985!.
0 November 2000 y Vol. 39, No. 33 y APPLIED OPTICS 6117

WallacJR
1

WallacJR
12




